p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.12SD16, C4.20C4≀C2, (C2×D8).1C4, C2.D8.1C4, C22⋊C16⋊4C2, (C2×C8).302D4, C8⋊7D4.2C2, (C2×C4).102D8, C4.7(C23⋊C4), (C22×C4).187D4, C4.C42⋊11C2, C2.4(D8.C4), C2.3(M5(2)⋊C2), (C22×C8).99C22, C22.57(D4⋊C4), C2.14(C22.SD16), (C2×C8).19(C2×C4), (C2×C4).219(C22⋊C4), SmallGroup(128,81)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.12SD16
G = < a,b,c,d,e | a2=b2=c2=e2=1, d8=c, eae=ab=ba, ac=ca, dad-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=abcd3 >
Character table of C23.12SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 4 | 16 | 2 | 2 | 2 | 2 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | -1+i | 1-i | -1-i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | -1-i | 1+i | -1+i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 1-i | -1+i | 1+i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 1+i | -1-i | 1-i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | √-2 | -√-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1615+ζ165 | ζ1611+ζ16 | ζ1613+ζ167 | ζ1611+ζ169 | ζ167+ζ165 | ζ169+ζ163 | ζ1615+ζ1613 | ζ163+ζ16 | complex lifted from D8.C4 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | √-2 | -√-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1613+ζ167 | ζ169+ζ163 | ζ1615+ζ165 | ζ163+ζ16 | ζ1615+ζ1613 | ζ1611+ζ16 | ζ167+ζ165 | ζ1611+ζ169 | complex lifted from D8.C4 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | -√-2 | √-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ163+ζ16 | ζ1615+ζ1613 | ζ1611+ζ169 | ζ1615+ζ165 | ζ1611+ζ16 | ζ167+ζ165 | ζ169+ζ163 | ζ1613+ζ167 | complex lifted from D8.C4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | √-2 | -√-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1615+ζ1613 | ζ163+ζ16 | ζ167+ζ165 | ζ1611+ζ16 | ζ1615+ζ165 | ζ1611+ζ169 | ζ1613+ζ167 | ζ169+ζ163 | complex lifted from D8.C4 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | √-2 | -√-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ167+ζ165 | ζ1611+ζ169 | ζ1615+ζ1613 | ζ169+ζ163 | ζ1613+ζ167 | ζ163+ζ16 | ζ1615+ζ165 | ζ1611+ζ16 | complex lifted from D8.C4 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | -√-2 | √-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1611+ζ16 | ζ1615+ζ165 | ζ169+ζ163 | ζ167+ζ165 | ζ1611+ζ169 | ζ1613+ζ167 | ζ163+ζ16 | ζ1615+ζ1613 | complex lifted from D8.C4 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | -√-2 | √-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ169+ζ163 | ζ1613+ζ167 | ζ1611+ζ16 | ζ1615+ζ1613 | ζ163+ζ16 | ζ1615+ζ165 | ζ1611+ζ169 | ζ167+ζ165 | complex lifted from D8.C4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | -√-2 | √-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1611+ζ169 | ζ167+ζ165 | ζ163+ζ16 | ζ1613+ζ167 | ζ169+ζ163 | ζ1615+ζ1613 | ζ1611+ζ16 | ζ1615+ζ165 | complex lifted from D8.C4 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from M5(2)⋊C2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from M5(2)⋊C2 |
(1 55)(2 25)(3 57)(4 27)(5 59)(6 29)(7 61)(8 31)(9 63)(10 17)(11 49)(12 19)(13 51)(14 21)(15 53)(16 23)(18 41)(20 43)(22 45)(24 47)(26 33)(28 35)(30 37)(32 39)(34 58)(36 60)(38 62)(40 64)(42 50)(44 52)(46 54)(48 56)
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 56)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 64)(26 49)(27 50)(28 51)(29 52)(30 53)(31 54)(32 55)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 27)(3 37)(4 64)(5 13)(6 23)(7 33)(8 60)(10 19)(11 45)(12 56)(14 31)(15 41)(16 52)(17 34)(18 30)(20 51)(21 46)(22 26)(24 63)(25 42)(28 59)(29 38)(32 55)(35 43)(36 54)(40 50)(44 62)(48 58)(49 61)(53 57)
G:=sub<Sym(64)| (1,55)(2,25)(3,57)(4,27)(5,59)(6,29)(7,61)(8,31)(9,63)(10,17)(11,49)(12,19)(13,51)(14,21)(15,53)(16,23)(18,41)(20,43)(22,45)(24,47)(26,33)(28,35)(30,37)(32,39)(34,58)(36,60)(38,62)(40,64)(42,50)(44,52)(46,54)(48,56), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,27)(3,37)(4,64)(5,13)(6,23)(7,33)(8,60)(10,19)(11,45)(12,56)(14,31)(15,41)(16,52)(17,34)(18,30)(20,51)(21,46)(22,26)(24,63)(25,42)(28,59)(29,38)(32,55)(35,43)(36,54)(40,50)(44,62)(48,58)(49,61)(53,57)>;
G:=Group( (1,55)(2,25)(3,57)(4,27)(5,59)(6,29)(7,61)(8,31)(9,63)(10,17)(11,49)(12,19)(13,51)(14,21)(15,53)(16,23)(18,41)(20,43)(22,45)(24,47)(26,33)(28,35)(30,37)(32,39)(34,58)(36,60)(38,62)(40,64)(42,50)(44,52)(46,54)(48,56), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,27)(3,37)(4,64)(5,13)(6,23)(7,33)(8,60)(10,19)(11,45)(12,56)(14,31)(15,41)(16,52)(17,34)(18,30)(20,51)(21,46)(22,26)(24,63)(25,42)(28,59)(29,38)(32,55)(35,43)(36,54)(40,50)(44,62)(48,58)(49,61)(53,57) );
G=PermutationGroup([[(1,55),(2,25),(3,57),(4,27),(5,59),(6,29),(7,61),(8,31),(9,63),(10,17),(11,49),(12,19),(13,51),(14,21),(15,53),(16,23),(18,41),(20,43),(22,45),(24,47),(26,33),(28,35),(30,37),(32,39),(34,58),(36,60),(38,62),(40,64),(42,50),(44,52),(46,54),(48,56)], [(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,56),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,64),(26,49),(27,50),(28,51),(29,52),(30,53),(31,54),(32,55)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,27),(3,37),(4,64),(5,13),(6,23),(7,33),(8,60),(10,19),(11,45),(12,56),(14,31),(15,41),(16,52),(17,34),(18,30),(20,51),(21,46),(22,26),(24,63),(25,42),(28,59),(29,38),(32,55),(35,43),(36,54),(40,50),(44,62),(48,58),(49,61),(53,57)]])
Matrix representation of C23.12SD16 ►in GL4(𝔽17) generated by
13 | 8 | 0 | 0 |
13 | 4 | 0 | 0 |
0 | 0 | 16 | 16 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
5 | 11 | 0 | 0 |
3 | 16 | 0 | 0 |
0 | 0 | 16 | 6 |
0 | 0 | 2 | 1 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 15 | 16 |
G:=sub<GL(4,GF(17))| [13,13,0,0,8,4,0,0,0,0,16,0,0,0,16,1],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[5,3,0,0,11,16,0,0,0,0,16,2,0,0,6,1],[1,1,0,0,0,16,0,0,0,0,1,15,0,0,0,16] >;
C23.12SD16 in GAP, Magma, Sage, TeX
C_2^3._{12}{\rm SD}_{16}
% in TeX
G:=Group("C2^3.12SD16");
// GroupNames label
G:=SmallGroup(128,81);
// by ID
G=gap.SmallGroup(128,81);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,387,520,1690,248,2804,1411,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^2=1,d^8=c,e*a*e=a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=a*b*c*d^3>;
// generators/relations
Export
Subgroup lattice of C23.12SD16 in TeX
Character table of C23.12SD16 in TeX